## On stability and convergence of a domain decomposition FE/FD method for Maxwell's equations

<u>M. Asadzadeh</u>, and L. Beilina Department of Mathematics Chalmers University of Technology and University of Gothenburg SE-412 96 Gothenburg, Sweden email: mohammad@chalmers.se

## Abstract

Stability and convergence analyses for the domain decomposition finite element/finite difference (FE/FD) method are presented. The analyses are developed for semi-discrete finite element schemes for the time-dependent Maxwell's equations. In this setting explicit finite element schemes and corresponding domain decomposition algorithms are constructed. Several numerical examples validat convergence rates obtained in the theoretical analysis. Our basic model is given in terms of the electric field  $E(x,t) = (E_1, E_2, E_3)(x,t)$ , for  $x \in \mathbb{R}^3$ ,  $t \in [0, T]$ . Under certain assumptions, the Cauchy problem for the Maxwell's equations for electric field E(x, t) in non-conductive media is given as

$$\begin{cases} \varepsilon(x)\frac{\partial^2 E}{\partial t^2} + \nabla \times \nabla \times E = 0, \\ \nabla \cdot (\varepsilon E) = 0, \\ E(x,0) = f_0(x), \qquad \frac{\partial E}{\partial t}(x,0) = f_1(x), \ x \in \mathbb{R}^3, \ t \in (0,T]. \end{cases}$$
(0.1)

To solve the problem (0.1) numerically, we restrict the spatial domian  $\mathbb{R}^3$  to a bounded convex Domain  $\Omega \subset \mathbb{R}^3$ , with boundary  $\partial\Omega$ . Then a domain decomposition, hybrid, finite element/finite difference scheme is constructed in certain split of the domain  $\Omega$ . More specifically, we divide the computational domain  $\Omega$  into two subregions,  $\Omega_{\text{FEM}}$  and  $\Omega_{\text{FDM}}$  such that  $\Omega = \Omega_{\text{FEM}} \cup \Omega_{\text{FDM}}$  and  $\Omega_{\text{FEM}}$  is a subset of the convex hul of  $\Omega_{\text{FDM}}$ . The function  $\varepsilon(x)$  in equation (0.1) is known in  $\Omega_{\text{FDM}}$  and need to be determined only in  $\Omega_{\text{FEM}}$ . When solving the inverse problem of reconstruction of unknown dielectric permittivity function  $\varepsilon$  in  $\Omega_{\text{FEM}}$ , such configuration allows stable computation of the unknown  $\varepsilon(x)$ , even if it has large discontinuities in  $\Omega_{\text{FEM}}$ . The communication between  $\Omega_{\text{FEM}}$  and  $\Omega_{\text{FDM}}$  is arranged using a mesh overlapping through a two-element thick layer around  $\Omega_{\text{FEM}}$  as shown by blue and green common boundaries in Figure 1. The blue boundary is outer boundary of  $\Omega_{\text{FEM}}$ , from which the solution is copied to the green boundary of  $\Omega_{\text{FDM}}$ .

The common nodes of both  $\Omega_{FEM}$  and  $\Omega_{FDM}$  domains belong to either of the following boundaries (see Figure 1). Then the main loop in time for the explicit hybrid FEM/FDM scheme, that solves (0.1), associated with appropriate boundary conditions, at each time step, is described in Algorithm 1 below:



Figure 1: Domain decomposition and mesh discretization in  $\Omega$ . The domain  $\Omega$  is a combination of the quadrilateral finite difference mesh  $\Omega_{\text{FDM}}$  presented on c), and the finite element mesh  $\Omega_{\text{FEM}}$  presented on b). Domains  $\Omega_{\text{FEM}}$  and  $\Omega_{\text{FDM}}$  overlaps by two layers of structured nodes such that they have common boundaries outlined by green and blue colors.

Algorithm 1 Domain decomposition process for hybrid FE/FD scheme

- 1: On the mesh  $\Omega_{FDM}$ , where FDM is used, update the Finite Difference (FD) solution.
- 2: On the mesh  $\Omega_{FEM}$ , where FEM is used, update the Finite Element (FE) solution.
- 3: Copy FE solution obtained at nodes  $\omega_{\diamond}$  (nodes on the green boundary of Figure 1) as a boundary condition on the inner boundary for the FD solution in  $\Omega_{FDM}$ .
- 4: Copy FD solution obtained at nodes  $\omega_0$  (nodes on the blue boundary of Figure 1) as a boundary condition for the FE solution on  $\partial \Omega_{FEM}$  of  $\Omega_{FEM}$ .
- 5: Apply boundary condition at  $\partial \Omega$  at the red boundary of  $\Omega_{FDM}$ .

## References

- M. Asadzadeh, L. Beilina, A stabilized P1 domain decomposition finiteelement method for time harmonic Macxwell's equations Mathematics and Computers in Simulation, Elsevier, 2022, https://doi.org/10.1016/j.matcom.2022.08.013.
- [2] M. Asadzadeh, L. Beilina, Stability and Convergence Analysis for a Domain Decomposition FE/FD Method for Maxwell's Equations in the Time Domain, Algorithms, 15(10), MDPI, https://doi.org/10.3390/a151100337.
- [3] M. Asadzadeh, L. Beilina, A Discontinuous Galerkin Approach for Stabilized Maxwell's Equation in Pseudo-Frequency Domain, Gas Dynamicswith Applications in Industry andLife Sciences, Springer Proceedings in Mathematics& Statistics, Eds Mohammad Asadzadeh, Larisa Beilina, Shigeru Takata, (2023).